General Certificate of Education
June 2007
Advanced Level Examination

$A \rightarrow A^{1}$

MPC3
MATHEMATICS
Unit Pure Core 3

Monday 11 June 20071.30 pm to 3.00 pm

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables
- an insert for use in Question 4 (enclosed).

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC3.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.
- Fill in the boxes at the top of the insert.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 (a) Differentiate $\ln x$ with respect to x.
(b) Given that $y=(x+1) \ln x$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(c) Find an equation of the normal to the curve $y=(x+1) \ln x$ at the point where $x=1$.

2 (a) Differentiate $(x-1)^{4}$ with respect to x.
(b) The diagram shows the curve with equation $y=2 \sqrt{(x-1)^{3}}$ for $x \geqslant 1$.

The shaded region R is bounded by the curve $y=2 \sqrt{(x-1)^{3}}$, the lines $x=2$ and $x=4$, and the x-axis.

Find the exact value of the volume of the solid formed when the region R is rotated through 360° about the x-axis.
(c) Describe a sequence of two geometrical transformations that maps the graph of $y=\sqrt{x^{3}}$ onto the graph of $y=2 \sqrt{(x-1)^{3}}$.

3 (a) Solve the equation $\operatorname{cosec} x=2$, giving all values of x in the interval $0^{\circ}<x<360^{\circ}$.
(b) The diagram shows the graph of $y=\operatorname{cosec} x$ for $0^{\circ}<x<360^{\circ}$.

(i) The point A on the curve is where $x=90^{\circ}$. State the y-coordinate of A.
(ii) Sketch the graph of $y=|\operatorname{cosec} x|$ for $0^{\circ}<x<360^{\circ}$.
(c) Solve the equation $|\operatorname{cosec} x|=2$, giving all values of x in the interval $0^{\circ}<x<360^{\circ}$.
(2 marks)

Turn over for the next question

4 [Figure 1, printed on the insert, is provided for use in this question.]
(a) Use Simpson's rule with 5 ordinates (4 strips) to find an approximation to $\int_{1}^{2} 3^{x} \mathrm{~d} x$, giving your answer to three significant figures.
(b) The curve $y=3^{x}$ intersects the line $y=x+3$ at the point where $x=\alpha$.
(i) Show that α lies between 0.5 and 1.5 .
(ii) Show that the equation $3^{x}=x+3$ can be rearranged into the form

$$
x=\frac{\ln (x+3)}{\ln 3}
$$

(iii) Use the iteration $x_{n+1}=\frac{\ln \left(x_{n}+3\right)}{\ln 3}$ with $x_{1}=0.5$ to find x_{3} to two significant figures.
(iv) The sketch on Figure 1 shows part of the graphs of $y=\frac{\ln (x+3)}{\ln 3}$ and $y=x$, and the position of x_{1}.

On Figure 1, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of x_{2} and x_{3} on the x-axis.
(2 marks)

5 The functions f and g are defined with their respective domains by

$$
\begin{aligned}
& \mathrm{f}(x)=\sqrt{x-2} \quad \text { for } x \geqslant 2 \\
& \mathrm{~g}(x)=\frac{1}{x} \quad \text { for real values of } x, \quad x \neq 0
\end{aligned}
$$

(a) State the range of f .
(b) (i) Find $\mathrm{fg}(x)$.
(ii) Solve the equation $\operatorname{fg}(x)=1$.
(c) The inverse of f is f^{-1}. Find $\mathrm{f}^{-1}(x)$.

6 (a) Use integration by parts to find $\int x \mathrm{e}^{5 x} \mathrm{~d} x$.
(b) (i) Use the substitution $u=\sqrt{x}$ to show that

$$
\begin{equation*}
\int \frac{1}{\sqrt{x}(1+\sqrt{x})} \mathrm{d} x=\int \frac{2}{1+u} \mathrm{~d} u \tag{2marks}
\end{equation*}
$$

(ii) Find the exact value of $\int_{1}^{9} \frac{1}{\sqrt{x}(1+\sqrt{x})} \mathrm{d} x$.

7 (a) A curve has equation $y=\left(x^{2}-3\right) \mathrm{e}^{x}$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(ii) Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(2 marks)
(b) (i) Find the x-coordinate of each of the stationary points of the curve.
(ii) Using your answer to part (a)(ii), determine the nature of each of the stationary points.

8 (a) Write down $\int \sec ^{2} x \mathrm{~d} x$.
(b) Given that $y=\frac{\cos x}{\sin x}$, use the quotient rule to show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\operatorname{cosec}^{2} x . \quad$ (4 marks)
(c) Prove the identity $(\tan x+\cot x)^{2}=\sec ^{2} x+\operatorname{cosec}^{2} x$.
(d) Hence find $\int_{0.5}^{1}(\tan x+\cot x)^{2} \mathrm{~d} x$, giving your answer to two significant figures.
(4 marks)

END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page

General Certificate of Education
June 2007
Advanced Level Examination

Insert

Insert for use in Question 4.
Fill in the boxes at the top of this page.
Fasten this insert securely to your answer book.

Turn over for Figure 1

Figure 1 (for use in Question 4)

